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This article reports the results of theoretical research concerning linear waves prop- 
agating on the surface of water in a uniform horizontal channel of arbitrary cross- 
section. Three different versions of the problem are considered. The first is the 
hydrodynamic problem when surface tension is neglected. The second and third 
include capillary effects, necessitating the use of edge conditions at the points of 
contact of the free edges and the channel walls. Two sets of edge constraints are 
used: pinned edges, where the lines of contact are fixed, and free edges, where the 
surface meets locally vertical walls orthogonally. These choices are physically realistic 
and have certain advantages for mathematical analysis. 

The hydrodynamic problems are shown to have a Hamiltonian structure in which 
the non-local operators inherent in the water-wave problem are explicitly exhibited. 
The existence, properties and applications of normal-mode solutions are discussed, 
and a qualitative comparison of those obtained for each problem is given. Explicit 
and numerical calculations of the dispersion relations for the normal modes are also 
carried out. A long-wave theory based upon a decomposition of the hydrodynamic 
problems in Fourier-transform space is developed. Finally a bifurcation theory for 
linear travelling waves is discussed, a potential application of which is the construction 
of an existence theory for periodic travelling-wave solutions of the corresponding 
nonlinear problems. 

1. Introduction 
1.1. The hydrodynamic problems 

This article is concerned with three related linear water-wave problems. All three have 
the same physical domain, namely a uniform horizontal channel of arbitrary cross- 
section (figure 1). (In fact the results stated in this paper are valid only if D is convex 
and its boundary d D  is piecewise smooth. An ‘arbitrary’ cross-section will therefore 
be assumed to have these properties.) Cartesian coordinates (x, y ,  z) have been 
introduced, with x directed along the length of the channel and y vertically upwards. 
In its undisturbed state the fluid occupies a domain D bounded by piecewise-smooth 
rigid channel walls r and the undisturbed free surface 

So = {(x,O,Z) : x E l R , O  < z < b}. 

t Present address: Department of Mathematical Sciences, Loughborough University of Tech- 
nology, Loughborough, Leicestershire, LE 1 I 3TU, UK. 
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z = o  z = b  

FIGURE 1. A cross-section through a uniform horizontal channel. 

When in motion, the fluid domain D, is the region bounded by r and the free surface 
S whose equation is 

y = q(x ,z , t ) ,  x E IR, 0 < z < b. 

Two types of wave motion are studied in this paper, namely periodic waves of period 
/ and aperiodic motions that vanish as x + fa. For use in the mathematical 
formulations below, the domains SO and D will henceforth be restricted to the region 
0 < x < L in the case of /-periodic waves. 

The first hydrodynamic problem concerns linear water waves in this kind of 
channel in the absence of surface tension. In terms of a velocity potential +(x, y, z ,  t )  
the mathematical problem is to solve Laplace's equation 

4 x x  + 4 y y  + 4 z z  = 0 in D (1.1) 

subject to the boundary conditions 

together with periodicity or evanescence conditions and appropriate initial data (see 
Lamb 1924, chapter IX; Whitham 1974, chapter 13). 

The other two problems concern linear water waves in the present type of channel 
when surface tension is operative. To consider these problems one must replace 
equation (1.4) with 

4f - d r t x x  + r t z z )  + grl = 0 on So, (1.5) 

where 0 > 0 is the coefficient of surface tension. The presence of a second derivative 
in this equation means that further information must be provided to complete the 
specification of the hydrodynamic problem. One specifies edge constraints at the lines 
z = 0,z = b (e.g. see Hocking 1987). In the present paper attention is focussed on 
two physically realistic choices of edge constraints. One choice is to specify that the 
points of contact are fixed, that is 

(1.6) 

Physical systems with these pinned edges have been studied experimentally and 

q ( x ,  0, t )  = q ( x ,  b, t )  = 0. 
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theoretically by several authors, notably Scott & Benjamin (1978), Benjamin & Scott 
(1979), Benjamin (1980), Graham-Eagle (1983), Shen (1983), Benjamin & Graham- 
Eagle (1985) and Weidman & Norris (1987). 

The second choice is to specify that the free surface touches the channel walls at 
a fixed angle. When capillarity is absent, the free surface meets the channel walls 
orthogonally. Let us use this free-edge condition when surface tension is included. In 
the channel setting outlined above, the free surface is supposed to be flat when the 
fluid is at rest. The free-edge model will therefore only be valid if the channel walls 
are locally vertical at the points of contact with the surface, in whch case the edge 
constraints are 

It is important to remember that edge constraints (1.7) must always be used in 
conjunction with the assumption that the channel walls are vertical at the points of 
contact with the free surface. This assumption will not be stated explicitly in the 
remainder of this paper, but must always be used when reference is made to edge 
constraints (1.7). 

Other physical models have been used by researchers in the past (see Dussan V. 
1979 for a general discussion of capillary effects at contact lines). In the present 
paper, however, attention is focussed on the pinned and free-edge conditions as 
specified above. Apart from their physical realism, there are significant mathematical 
advantages inherent in the models in that they allow the use of rigorous mathematical 
methods to analyse the problem. These mathematical advantages are shared by the 
hydrodynamic problem in which capillarity is neglected. 

%(X, 0, t )  = ?&, b, t )  = 0. (1.7) 

1.2. Objectives of the present paper 

In this paper the main mathematical features of the three hydrodynamic problems are 
discussed in a descriptive mathematical manner in order to reveal certain aspects of 
their structure. Rigorous pure-mathematical theory has not been included. (Readers 
interested in such an analysis may refer to Groves 1994 for the problem in the absence 
of surface tension; a forthcoming article will provide the necessary theory for the 
capillary-wave problems.) 

The discussion begins in $2 with the Hamiltonian formulation of these water-wave 
problems, where it is shown that they have the same Hamiltonian structure as the clas- 
sical water-wave problem. The edge constraints, already discussed in $1.1, are crucial 
to the Hamiltonian structure. The choices of edge constraints given in $1.1 are precisely 
those which admit a canonical Hamiltonian structure using the Zakharov coordinates. 

Section 2 also describes the mathematical operators that occur in the hydro- 
dynamic problems. Benjamin (1984, p.47) remarked that the difficulty with the 
water-wave problem, even in its linear form, is that it involves non-local operators. 
Craig & Groves (1994) have expanded on this remark, showing that the nonlocal 
operator in question is an operator that maps Dirichlet data for Laplace’s equation 
to the corresponding Neumann data. Such a Dirichlet-Neumann operator appears 
in the present hydrodynamic examples, and is the focus of the Hamiltonian theory 
in $2. When surface tension is operative, the situation becomes more complex in 
that the basic operator is no longer simply the Dirichlet-Neumann operator but 
the composition of this operator with another operator that is responsible for the 
higher-order derivatives in equation (1.5). An alternative Hamiltonian formulation 
for the capillary-wave problems is given in $2 in terms of variables that highlight the 
role played by this new operator. 
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In $3 attention is focussed on normal-mode properties of the problems. It is of 
course an elementary exercise to determine the dispersion relation between the speed 
c and wavenumber k of periodic linear travelling waves in two dimensions. The 
presence of three-dimensional geometry in the present hydrodynamic problems leads 
to the emergence of a countably infinite family of travelling-wave solutions, each with 
its own dispersion relation. These normal-mode solutions are readily obtained for a 
rectangular channel by an elementary separation-of-variables calculation. However 
for other cross-sections their existence and regularity must be proved using delicate 
functional-analytic arguments (see Groves 1994, $2.3). Such mathematical arguments 
have been successfully employed to determine the generic properties of the normal- 
mode solutions and the qualitative nature of their dispersion relations (see Groves 
1994, $2.4). These results, together with examples, are given in $3. 

Working in Fourier-transform space, one finds that any solution of the linearized 
hydrodynamic problem may be uniquely decomposed into a superposition of normal- 
mode solutions. This fact is the subject of $4, where the problem is reduced to a 
set of decoupled ordinary differential equations in Fourier-transform space. In terms 
of this decomposition one can in theory solve the physically important initial-value 
problem, which is discussed in detail in $4. A further useful aspect of the normal- 
mode composition involves the construction of long-wave approximations. A method 
of deriving long-wave approximations to the water-wave problem in the context 
of a Hamiltonian perturbation theory was explained by Craig & Groves (1994). A 
technique that is similar in principle is used in $5 of the present paper to derive a 
sequence of long-wave approximations to the channel problems. 

Finally, $6 takes a brief look at a linear bifurcation theory. Regarding the speed 
c of uniformly travelling waves as a parameter, one may use the generic properties 
of the normal modes to determine when periodic wavetrains bifurcate from the zero 
solution and how they develop. Although this process is readily accomplished in the 
linear setting, it has significant implications for nonlinear existence theory, the subject 
of a forthcoming paper. 

2. Hamiltonian structure 
Let us now recall the basic definitions of Hamiltonian systems, both in finite and 

infinite dimensions. A second-order canonical Hamiltonian system is a two-component 
system of ordinary differential equations that takes the form 

where H : lR2 + R is a function of the variables x and y 
second-order canonical Hamiltonian evolutionary system is a 
partial differential equations that takes the form 

called the Hamiltonian. A 
two-component system of 

The variables u and u belong to a dense subset 9 of the Hilbert space L 2 ( X )  of 
functions that are square-integrable on an open subset X of IR". The function 

: (L2(X))2  + IR is termed the Hamiltonian and has the form 
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where H is the Hamiltonian density function. Finally, the variational derivative of H 
with respect to u is the unique element S H / S u  of L 2 ( X )  with the property that 

dr  

for all u1 E 9. The variational derivative s f i / s v  is defined in a similar fashion. 
The Hamiltonian structure of the three hydrodynamic problems in this investigation 

(no capillarity, capillarity and pinned edges, capillarity and free edges meeting vertical 
walls) is the same as that of the classical linearized water-wave problem. That 
structure was discovered by Zakharov (1968) and has since been elaborated upon 
by many authors, most notably by Miles (1977, 1981) and Benjamin & Olver (1982). 
The Hamiltonian variables are q and @ = $(x,O, z, t ) ,  which variables completely 
determine the wave motion. The shape of the free surface is determined by q,  and @ 
completes the specification of the mixed boundary-value problem 

A$ = O  in D, 
4 = @ on SO, 

together with periodicity or evan%scence conditions, which problem uniquely deter- 
mines $ in D. The total energy H a  of the wave qotion (per period in !he case of 
periodic waves) is the sum of the potential energy V and kinetic energy K, which in 
the linearized approximation are 

k(q,@) = ID ;IV+I2dxdydz = i@g5ydxdz. I. 
One may write the total energy functional in a more appealing way by making use of 
a Dirichlet-Neumann operator, defined as follows. Fix @, let + be the unique solution 
of the Robin problem (2.3), (2.4), (2.5) and write 

The operator GI is non-negative and self-adjoint on L2(So) (see Craig 1991), and one 
may use it to write A, as 

It follows immediately from the self-adjointness of G1 on L2(S0) that 

To calculate the variational derivative of fr,  with respect to q ,  let rj denote a variation 
in q. The corresponding first variation in H a  is 

H a  = S, {gqrj + o q x 4 x  + n q z 4 z )  dxdz. 

Integrating the second term by parts with respect to x and the third term by parts 
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with respect to z, one finds that 

H a  = J ,  {gq f l -  c q x x q  - c ~ z z q }  dxdz + [ 0 q z q l i 3 .  

When c is non-zero the term in square brackets vanishes if q satisfies (1.6) or rj 
satisfies (1.7). In the latter case, q also satisfies (1.7) because tj belongs to the same 
class of functions as q. In all cases it follows that 

One finds from (2.7), (2.8) that (1.3) and (1.4) (if c = 0) or (1.3) and (1.5) (if 0 # 0) 
are equivalent to 

which constitutes a Hamiltonian evolutionary system of the form (2.2) in terms of the 
variable (q ,  @)’ E 9 c (L’(SO))~. 

The above formulations of the channel problems indicate that when c = 0, the 
heart of the matter is the Dirichlet-Neumann operator GI. When capillary effects are 
taken into account, the situation changes. To understand the effect of surface tension, 
let us replace the variables $ and @ with 

(The specification of this inverse operator is completed by the edge constraints (1.6) 
or (1.7).) Equations (l.l), (1.2), (1.3), (1.5) become 

xu: + x y y  + x z z  = 0 in D, (2.10) 

lVxl + O  as x 4 f o o ,  (2.11) 

3 = O  on r ,  
an 

xr +gq  = 0 on SO 

and the system (2.9), (2.6) transforms into the Hamiltonian evolutionary system 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where 

The above Hamiltonian formulation elucidates a fact that appears up until now to 
have been overlooked. The basic operator in the water-wave problem when surface 
tension is operative is not the Dirichlet-Neumann operator GI but rather the operator 
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The replacement of GI by F1 as the basic operator accounts for the extra difficulty in 
the water-wave problem when surface tension is taken into account. 

3. Normal modes 
3.1. Gravity waues 

When o = 0 the mathematical model is described by equations ( l . l ) ,  (1.2), (1.3), (1.4). 
Among its classical elementary solutions are sinusoidal solutions of the form 

ik(x-ct) ik(x-ct) v(x ,z ,  t )  = f (z)e , &,Y,z, t )  = --ikcv(y, z)e , 
where c, f and v depend on the real number k. The functions y and f satisfy 

vy = f on axns, (3.3) 

with 

k 2 2 v ( 0 ,  z) = g f  (2). (3.4) 
A solution {f, y, c2(k)} of (3.1), (3.2), (3.3), (3.4) is termed a normal mode with disper- 
sion relation c2 = c2(k).  To establish the existence and properties of normal modes for 
a specified channel cross-section one requires a sophisticated mathematical treatment, 
details of which have been given by Groves (1994). The list below summarizes the 
properties of normal-mode solutions. 

( 1 )  There is a countably-infinite set {( fn ,  y, ~ i ( k ) ) } : = ~  of normal modes; 
(2)  The sequence {c;}:=~ satisjies 0 < ci < c: < c; i - - .  with c i  --* co as n + 00; 

(3) Each f n  is infinitely continuously diflerentiable on [0, b] ; 
(4 )  The set {fn}Fa is complete and orthogonal in L2(0, b), that is 

and any function f that is square-integrable on (0, b) may be written as f = C;=,, Anfn, 
where the coeficients A, are uniquely determined by f ;  

(5 )  fn is either symmetric or antisymmetric about the line z = b / 2 ;  
( 6 )  f n  has exactly n zeros in (0, b); 
( 7 )  c i  is an even function of k ;  
( 8 )  c;(k) is an infinitely diflerentiable function of k for k # 0 ;  
( 9 )  co has afinite value at k = 0;  

(10) c; - 0 ( k k 2 )  as k -+ Ofor n # 0;  
(11)  ci is monotone decreasing for k > 0. 

All the properties in the above list are readily verified for a rectangular channel of 
depth h. A simple separation-of-variables argument shows that 

cosh [ (k2 + (nx /b)2)1 /2  ( y  + h)] cos (nxz lb)  

(k2 + (nn/b)2)1i2 sinh [ (k2  + (nn/b)2)1 /2  h] 
vn = A , n =0,1 ,2  ,..., (3.7) 
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FIGURE 3. Dispersion relations for a square channel. 

c i =  k2 (k2+(nrr/h)2)1/2tanh [ p + ( n n / b ) 2 ) ” 2 h ] ,  n=0,1,2, ..., (3.8) 

where A is an arbitrary constant. In order to plot the dispersion relations one 
introduces the dimensionless variables 

1 1 /2 
( x , y , z )  = $ x ’ , ~ ’ , z ’ ) ,  t = t’ ($) , k = dk’, c = c’/(gd)’12, (3.9) 

where a prime denotes a dimensional variable and d is the mean depth of the 
undisturbed fluid. For a square channel the non-dimensionalization is equivalent to 
setting g = h = 1 in (3.6), (3.7), (3.8) (see figure 2). The dispersion relations for a 
square channel are shown in figure 3. 

Remarkably, the normal modes can be explicitly calculated for some other simple 
channel cross-sections. In order to carry out such calculations, notice that (3.1), (3.2), 
(3.3), (3.4) may be combined into an eigenvalue problem for y, namely 

‘vyy +ty,; = k 2 w  in X, (3.10) 

(3.11) 

(3.12) 

This observation provides a way of calculating the normal modes (fn, w,,, c;(k)). One 
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+Non-dimensional breadth 2(tan a + tan B ) k  

01, 4 = (0,O) 

FIGURE 4. A triangular channel. 

solves (3.10), (3.11), (3.12) to determine the doubles (y,,,c;(k)) and the f,, are then 
calculated using (3.3) or (3.4). 

A complete set of normal modes is known for a channel with a symmetric triangular 
cross-section whose walls make an angle n/4 with the vertical (see Macdonald 1894; 
Lamb 1924, $261; Groves 1994). In a coordinate system in which the origin is at the 
bottom corner of the triangle, so that h denotes the height of the free surface above 
this point, the mode-0 and mode-1 solutions are 

The symmetric modes 2,4,6,. . . are given by 

gP 
k2 

y = A[cosh(ay)cos(Pz) + cos(~y)cosh(ctz)], c2 = -- tanh(Ph), (3.13) 

where a,P satisfy 

a 2 - p2 = k2, ah tanh(ah) + p h  tan(ph) = 0. (3.14) 

Equations (3.14) have a countably infinite set of solutions {(an, P, )>~= , ,  each pair 
(a,,, /In) of which generates a normal-mode solution through (3.13) followed by (3.3). 
The correct place of a particular solution in the sequence of normal modes is deter- 
mined by counting the number of zeros o f f  in the interval (0,b). The antisymmetric 
modes 3,5,7,. . . are given by 

2 - gs y = A[sinh(ay) sin(pz) + sin(py) sinh(crz)], c - - coth(bh), 
k2 

where cr,p satisfy 
2 a - p2 = k2, ahcoth(ah) - phcot(ph) = 0, 

and are obtained in the correct sequence using the arguments given above for 
the symmetric modes. Introducing the non-dimensionalization (3.9), which is here 
equivalent to setting g = 1, h = 2 (see figure 4 with ct = p = n/4), one may compute 
the dispersion relations numerically according to the above procedure. This numerical 
computation is described in detail by Groves (1994, $2.4). The dispersion relations 
for the first few modes are shown in figure 5. 

The symmetric modes for a symmetric triangular channel with sides inclined at an 
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FIGURE 
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5. Dispersion relations for a symmetric triangular channel of half-angle 

0 2 4 6 8 10 
Wavenumber, k 

5. Dispersion relations for a symmetric triangular channel of half-angle n/4. 

angle n/3 to the vertical have been obtained by Packham (1980). The mode-0 and 
mode-2 solutions had previously been obtained by Macdonald ( 1894) and are given 
by 

c2k2 

gk 
- h) + - sinhk(2 - h) + 2cosh 

x {coshk(;+h)-gksinhk C2k2 (9 - + h  )}] , 
where 

c2 = 3 4k coth ( y )  { 1 [ 1 - f tanh2 (F) ] 1’2} . 

One chooses the negative sign for the mode-0 solution (because this choice means 
that fa  has no zeros) and the positive sign for the mode-2 solution (because this 
choice means that f 2  has two zeros). The remaining symmetric modes 4,6,8,. . . are 
given by 

c?k2 

ag 
y = A [ { cosh(a(2 - h)) + - sinh(a(2 - h)) 

+2cosh ( i) &Y cos (F)  f i b 2  cos (g) 

-2 sinh ( i) &Y sin (I) 8 / 3 2  sin (F) 
x { cosh ((9 a - + h  )) -- C2k2s inh(a( i+h))}  

ag 

x { sinh (a (i + h)) - $ cosh (a (i + h))}] , 

(/3/a)fi(cosh(3ah) - cos(8fih)) 
(fi/cc)$sinh(3ah) - 3 sin(8fih) 



Theoretical aspects of gravity-capillary waves in non-rectangular channels 387 

0 5 10 15 20 

Wavenumber, k 
FIGURE 6. Dispersion relations for a symmetric triangular channel of half-angle n/3. 

where a,/3 satisfy a2 - P2 = k 2  and 

(!) cosh(3ah) cos(&?h) - sinh(3ah) sin( &h) 

-1 [{ 3 +  5 (g} - { 3 +  (;)2}cos2(8flh)] =o* 
4 

The normal modes are obtained from these equations using the argument given 
above for the triangular channel with half-angle x/4. Introducing the usual non- 
dimensionalization (setting g = 1, h = 2, as shown in figure 4 with a = /3 = x/4), 
one may compute the dispersion relations numerically (see Groves 1994, $2.4). The 
dispersion relations for the first few symmetric modes are shown in figure 6. 

The complete set of normal modes for a semicircular channel of radius a have 
recently been obtained by Evans & Linton (1993). The symmetric modes are found 
by considering the eigenvalue problem 

(A  - M)p = 0, 

where A is the infinite matrix with (m,n)th entry 

(Here Z j  denotes the modified Bessel function of order j . )  The symmetric normal 
modes are given by 

I2,+l(kr)cos(2n + 1)0 , m = 0,1,2,. . . , 8kSh 
+Ih+z(kr) cos(2n + 2)0 - - 

=g 
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y = o  

FIGURE 7. A semicircular channel. 

in which A, ,I2,. . . are the eigenvalues of A, pi?, is the ith component of the eigenvalue 
corresponding to &,,, and ( r . 0 )  are polar coordinates defined by z = rcosO, y = 
--I sin 8, where the ( y ,  z )  axes have been translated so that the origin is at the centre 
of the undisturbed free surface. 

The asymmetric modes are found by considering the eigenvalue problem 

(6 - I / ) q  == 0, 

where 6 is the infinite matrix with (m,n)th entry 

The asymmetric normal modes are given by 

n3ag 
c:,+,=,,,--, m = 0 , 1 , 2  ,..., 

2m+l 

in which 21, A3, .  . . are the eigenvalues of 6 and qim+l is the ith component of the 
eigenvalue corresponding to &m+l.  

In order to calculate the dispersion relations numerically, one introduces the usual 
non-dimensionalization (which is equivalent here to setting g = 1 and a = 4/n, as 
shown in figure 7) and approximates A and 6 by principal submatrices. Mathematical 
verification of the validity of this method, together with a discussion of the effect the 
size of the approximate matrix has on the accuracy of the result, is given by Evans 
& Linton (1993, $4). The dispersion relations for the first few modes, calculated with 
the twentieth principal submatrix, are shown in figure 8. 

These explicit calculations have recently been supplemented by McIver & McIver 
(1993, &I), who consider a channel which, in the present notation, is symmetric 
about z = b/2 and present a variational method of calculating upper bounds on the 
frequencies kc&), kcl ( k ) ,  . . . of the normal modes. 
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FIGURE 8. Dispersion relations for a semicircular channel. 

3.2. Gravity-capillary waves 

When CJ # 0 the mathematical models are described by equations (l.l), (1.2), (1.3), 
(1.5) together with one of the edge constraints (1.6) or (1.7). Among the classical 
elementary solutions are sinusoidal solutions of the form 

of (2.10), (2.11), (2.12), (2.13), (2.14), where c,f  and y depend on the real number k. 
The functions v and f satisfy 

(3.15) 

on axnr, (3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

A solution { f , y , c 2 ( k ) }  of (3.15), (3.16), (3.17), (3.18) together with one of (3.19) 
or (3.20) is termed a normal mode with dispersion relation c2 = c2(k). To establish 
the existence and properties of normal modes for a specified channel cross-section 
one requires a functional-analytic treatment, details of which will be given in a 
forthcoming article. When surface-tension effects are present, the properties of 
normal-mode solutions are given by the list in $3.1 with properties (4) and (11) 
replaced by 
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constraints (3.19) are imposed), that is 
( 4 )  The set {fn}r4 is complete and orthogonal in H’(0,b) (or H,’(O,b) i f the edge 

(3.21) 

and any function f such that f and f’ are square-integrable on (0,b) (and also that 
f(0) = f ( b )  = 0 if the edge constraints (3.19) are imposed) may be written as f = 
C:4 Anfn.  where the coeficients A, are uniquely determined by f:  

( I  1 )  ci, n = 1,2,. . . has a minimum at some k = kmin > 0 and is monotone decreasing 
for k < kmin but monotone increasing for k > kmin; 

(1 2)  c$ is either monotone increasing for k > 0 or has a minimum at some k = kmin > 
0 and is monotone decreasing for k < kmin but monotone increasing for k > k,,,in. The 
type of behaviour exhibited is determined by the relative sizes of a,g and d. 

The only explicit example currently available is for the case of a rectangular channel 
with the edge constraints (1.7). The normal modes are 

(3.22) 
nnz 

f . = A c o s ( T ) ,  n=0,1,2 ,..., 

cash [ (k’ + (nn/b)’)’/’ ( y  + h)] cos (nnzlb) 

(k2 + (nn/b)2)1’2 sinh [ ( k 2  + (nn/b)2)1/2 h] 
tvn = A , n=0,1,2 ,..., (3.23) 

4 = 1 [g  (k‘ + (nn/b)2)1 /2  + a (k’ + (nn/b)’)3i2] tanh [ (k‘ + (nn/b)’)’/’ h] , 

n=0,1,2 ,..., (3.24) 

where A is an arbitrary constant and h is the depth of the water in its undisturbed 
state. In order to plot the dispersion relations one introduces the dimensionless 
variables 

1 1 /2 
(x ,  Y ,  Z )  = j ( d ,  y’, z’), t = t’ ($) , o = a’/(gd2), k = dk’, c = c’/(gd)’/2, 

(3.251 
where a prime denotes a dimensional variable. Here d is the mean depth of the 
undisturbed fluid, so that the non-dimensional area of cross-section A and non- 
dimensional breadth of the free surface b are equal (figure 2). For a square channel 
this non-dimensionalization is equivalent to setting g = h = 1 in (3.22), (3.23), (3.24). 
The dispersion relations for a square channel with a = 0.1 and a = 0.4 are shown in 
figures 9 and 10 respectively. Notice the difference in the behaviour of the mode-0 
dispersion relation for the different values of a. (In fact cf is monotone increasing for 
k > 0 if a/gh2 < 1/3 and has a minimum at some k = kmin > 0 if o/gh2 > 1/3.) 

Notice that (3.15), (3.16), (3.17), (3.18) may be combined into an eigenvalue problem 
for tp, namely 

V y y  + w z z  =k2v in x, (3.26) 

on a X n r ,  (3.27) - = o  aw 
an 

on a X n S o ,  
k2c2 

= -tv 
g 

( 1  + !$) yy - g t v y z z  a (3.28) 
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I 
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Wavenumber, k 
FIGURE 9. Dispersion relations for a square channel with edge constraints (1.7) and u = 0.1. 

0 5 10 15 20 

Wavenumber, k 
FIGURE 10. Dispersion relations for a square channel with edge constraints (1.7) and u = 0.4. 

which system is completed by specifying either 

W(0,O) = 0, Y(0, b)  = 0 (3.29) 

if one is using the edge constraints (1.6) or 

W Z ( 0 , O )  = 0, Y Z ( 0 ,  b) = 0 (3.30) 

if one is using edge constraints (1.7). This observation indicates a theoretical procedure 
for calculating the normal modes c fn ,  yn, c;(k)). One solves one of the above boundary- 
value problems to determine the doubles (yn ,c; (k) )  and the fn are then calculated 
using (3.17) or (3.18). 

No explicit solutions for the hydrodynamic problem with the edge constraints ( 1.6) 
are currently available. However, the following method may be used to numerically 
compute the dispersion relations for certain channel cross-sections. (A similar method 
has been given by Graham-Eagle 1983, where readers may find the details of its 
functional-analytic foundations. Here only the method itself is described.) Let 
((%, Qn, Z;(k))):&, denote the set of normal modes for the hydrodynamic problem 
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with the same geometry but without surface tension. Define 
1 

N(n) = l dz, n = 0,1,2, .  . . 
g 

k2Z.i Pn=-, n = 0 , 1 , 2  ,... 

and without loss of generality assume that the f,, are normalized so that 

Subject to the hypothesis that {f,,}:n>,mE0 satisfies not only (3.5) but also (3.21), one has 
that the function 

is zero at precisely the points k 2 c i / g ,  k 2 c i / g , k 2 c i / g , .  . . and that the function 

is zero at precisely the points k2c: /g ,  k2c : /g ,  k 2 c : / g , .  . .. For any value of k ,  the values 
of c i ( k ) ,  rn = 0,1,. . . may therefore be found by numerically computing the zeros of 
the functions 5s and lA. 

N(n)  and P,, are given by 
In the case of a rectangular channel of depth h and breadth b the functions T,,, 

, n = l , 2 , 3  ,..., (3.31) 

(3.32) 
n‘n‘ 

b2 ’ 
N ( 0 )  = 0, N ( n )  = - n = l , 2 , 3  ,..., 

(3.33) 

The dispersion relations for the first few symmetric normal modes in a square 
channel are shown in figures 11 and 12. The numerical computations were carried 
out with non-dimensionalized parameter values g = h = b = 1 and cr = 0.1,0.4 and 
approximating the infinite sum by the first forty terms. Comparing figures 11, 12 
with figures 9, 10, one finds that the qualitative behaviour of the dispersion relations 
remains the same, but the phase speeds are higher when the edge constraints (1.6) are 
imposed. 

The present method is applicable to channel geometries where the normal modes 
in the absence of surface tension are known either explicitly or numerically. A key 
feature of the method is that it requires {I,,} to satisfy both (3.5) and (3.21). In the 
case of a rectangular channel, by comparing (3.6), (3.7), (3.8) with (3.22), (3.23), (3.24), 
one finds that the sequences {f,,} and {f,,} are the same in both cases. Equations (3.5) 
and (3.21) are therefore both automatically satisfied. One may reasonably conjecture 
that the two sequences are the same for a wide class of channel geometries. Further 
justification for this conjecture is given in $5.2.2. 
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Wavenumber, k 

FIGURE 11. Dispersion relations for a square channel with edge constraints (1.6) and CT = 0.1. 

I 

0 20 40 60 80 100 
Wavenumber, k 

FIGURE 12. Dispersion relations for a square channel with edge constraints (1.6) and CT = 0.4. 

4. The problems in Fourier-transform space 
Because the material in this Section is an essential prerequisite for the long-wave 

theory in $5, only aperiodic wave motions vanishing as x + foo are considered 
here. However, a similar approach for 8-periodic waves based upon a Fourier-series 
decomposition rather than a Fourier transform could presumably be carried out with 
no extra difficulty. 

4.1. Gravity waves 
Taking the Fourier transform of equations (2.9), one obtains another Hamiltonian 
evolutionary system, namely 

in which 
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and 9, & E L2(0, b) are the transformed variables 

The operator G2 is also a Dirichlet-Neumann operator, defined as follows. Fix 6, let 
4 be the unique solution of the elliptic boundary-value problem 

$yy +iZz = k2$ in X ,  

$ = 6  on axnso, 

and write G26 = $,,l,,=,~. Here X denotes the interior of the cross-section of D in the 
(y,z)-plane. (One obtains (4.2), (4.3), (4.4) by taking the Fourier transform of (2.3), 

Returning to the previous theory concerning normal modes, one finds that each of 
(2.41, (2.51.) 

the pairs 

f in = an(k, t ) fn(Z,  k),  6, = b n ( k  t ) fn(Z,  k) ,  n = 0,1,2, - - - (4.5) 

is a solution of (4.1). Here a, and b, are complex-valued functions of k and t related 
by the formula 

The Hamiltonian system (4.1) thus decomposes into an infinite sequence of indepen- 
dent Hamiltonian systems, the nth of which is 

with 
b 

A, = 1 { igfji + i 6 , , G & , }  dz. 

It is possible to give an explicit representation of the operator Gz. Because 

for any n, it follows from (3.3), (3.4) that 

and therefore 

The Hamiltonian A, may consequently be written in the simpler form 

(4.7) 
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One more simplification is available. The Hamiltonian system 

in which 

is a pair of ordinary differential equations which determines a solution of (4.6) through 
the relationship (4.5). 

4.2. Gravity-capillary waves 
A similar approach may be adopted when the hydrodynamic problems involving 
surface-tension effects are under consideration. In this case one takes the Fourier 
transform of equations (2.15) to obtain another Hamiltonian evolutionary system, 
namely 

(4.10) 

where 

Here f j ,X  E H’(0,b)  or H;(O,b) are the transformed variables and F2 is the operator 

in which G2 is the operator defined in $4.1. 

the pairs 
Returning to the previous theory concerning normal modes, one finds that each of 

X n  = bn(k, t)fn(Z,k), (4.1 1) 

where b, = -iga,/kc,, is a solution of (4.10). The Hamiltonian system (4.10) thus 
decomposes into an infinite sequence of independent Hamiltonian systems, the nth of 
which is 

(4.12) 

f i n  = an(k, t)fn(Z,k), n = 0,1,2,. . . , 

ax,, 63, - =-- aq, 63, -= -  
at ST,,’ at S q n  ’ 

with 
b 

3, = 1 { + $X,,F&} dz. 

It is possible to give an explicit representation of the operator F2. Because 

for any n, it follows from (3.17)’ (3.18) that 

and therefore 
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The Hamiltonian A,, may consequently be written in the simpler form 

(4.13) 

Finally notice that the Hamiltonian system (4.8) is a pair of ordinary differential 
equations which determines a solution of (4.12) through the relationship (4.1 1). 

This section has indicated a theoretical method for solving the initial-value problem 
for linear water waves in a channel of uniform horizontal cross-section in Fourier- 
transform space. First one finds the normal modes {fn,wn,ci(_k)} for the particular 
hydrodynamic problem and resolves the initial data (ij(z, O,k) ,  @(z,  0, k ) )  into its com- 
ponents parallel to each f n .  The evolution of each of these components is then 
determined by a pair of ordinary differential equations. Although this process is 
of interest in its own right, the remaining sections of the present paper are more 
concerned with applications of this theory to other aspects of the hydrodynamic 
problem, particularly long-wave theory and the transverse wave profiles. 

5. Long-wave approximations 
5.1. Derivation of long-wave equations 

Recall that in all three hydrodynamic problems the phase speeds c(k) of all normal 
modes except the lowest are unbounded in the long-wave limit k + 0. This property 
implies that the mode-0 component of the solution dominates in the long-wave limit. 
When carrying out long-wave theory one therefore concentrates on the system (4.8), 
(4.9) with n = 0. The form of the Hamiltonian HO suggests a natural approximating 
scheme for small values of k. One fixes the Hamiltonian structure and the variables 
a,b and expands the Hamiltonian as a power series in k .  Because c2(k) is an even 
function of k which is finite at k = 0, it has a series expansion in powers of k 2 .  The 
Hamiltonian may therefore be expanded in a power series of the form 

HO(UO, bo, k )  = ho(a0, bo) + k2hl (ao, bo) + k4h2(ao, bo) + . . 
and a sequence of approximations to (4.8) is given by 

This type of Hamiltonian perturbation theory has been used on other, more complex 
Hamiltonian systems to derive long-wave approximations (see Craig & Groves 1994; 
Groves 1992, 1994). 

One may introduce the non-dimensionalization (3.9) to write the expansion of c2(k)  
as 

(5.1) 
the dimensional version of which is 

(5-2) 

c; (k)  = Co + C,k2 + C2k4 + . . , 

c@) = gd[Co + C,(kd)2 + cz(kd)4 + . . *]. 
The expression for the Hamiltonian is then 

Ho = fga; + i d  (Cok2 + Cld2k4 + C2d4k6 + * * *) b;, 

so that the nth approximate Hamiltonian is 

HA. = ;gag + 5 (Codk2 + Cld3k4 + * * * + Cn-lk2nd2n-1) bi 
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and the nth approximation to the system (4.8) is 

& = (codk2 + cld3k4 + . . . + ~ , - ~ k ~ ~ d ~ ~ - ~ ) b ~ ,  (5.3) 
b o  = -gao. (5.4) 

Equations (5.3), (5.4) determine the longitudinal profile of the wave to any required 
order of approximation. 

The transverse profile is determined by the function fo(z,k), which may also be 
expanded in a series of powers of k. The following theory deals with the case when 
D = 0: to obtain the corresponding results for the capillary-wave problems one simply 
replaces all occurrences of @O and &o with Xo and XO. Recall that 

(5.5) 

in which the subscript 0 has again been dropped. One may expand w as a power 
series 

(5.6) 

fo = Codto(0, z)k2 + [C1d3t0(O, 2) + Codtl(O, z)1k4 + [C2d5t0(0, Z) + C0dt2(0, z)1k6 +. . . . 
(5.7) 

The nth approximation to the transverse wave profile is obtained by retaining terms 
up to order 2n in the above expansion. One may therefore calculate the original 
Fourier-transformed variables ijo, 4o to 0 ( k 2 , )  using the formulae 

40 = (Cod50(O,z)k2 + 

~o(y,z ,k)  = ~o(Y,z )  +k25i(y,z) +k4t2(y,z) + *. . .  
Substituting (5.6) and the expansion (5.2) into ( 5 . 3 ,  one finds that 

. + [Cfl-ld2"-'to(0,z) + C~dtLl(O,z)]k~")a, 
40 = (C,d<o(O,z)k2 + * .  * + [cfl-,d2"-'~o(O,z) + Cod~,-1(O,z)]k2")b, 

where (ao, bo)= is the solution of (5.3), (5.4). 

ential equations. Taking the inverse Fourier transform of (5.3), (5.4), one obtains 
Let us now reformulate these long-wave approximations in terms of partial differ- 

(5.8) 
a2nu  

ut = -Coduxx + Cld3Ux, + ' * .  + (-1)"Cfl_1d2"-'- 
a X 2 n  

ut = -gu, (5.9) 

in which 

a&, t)eilx dk, u(x, t) = 

This system is immediately recognizable as the Hamiltonian evolutionary system 

(5.10) 

where 

The original variables qo(x, z, t), @o(x, z, t) are calculated to the present order of 



(5.13) 

where ( u , v ) ~  is the solution of (5.8), (5.9). 
Equations (5.8), (5.9) are the counterparts to the classical long-wave equations 

for linear surface waves on a two-dimensional expanse of fluid (e.g. see Craig & 
Groves 1994). However, one should always remember that solutions of (5 .8) ,  (5.4) 
do not predict the wave shape by themselves; these solutions must be related to the 
physical variables q, @ by equations (5.12), (5.13). The next section discusses methods 
of determining the terms CO, C1,. . . and <0,51,. . . and calculates the first two pairs 
(CO, to), (Cl, 5 1 )  for each of the previously examined channel geometries. 

5.2. Calculation of the terms in the long-wave approximations 
5.2.1. Gravity waves 

The non-dimensional version of the problem (3.10), (3.11), (3.12) is 

wYY +wZz =k2v in X, (5.14) 

k2C2W(0, z )  = WJO,  z). 

(5.15) 

(5.16) 

Integrating (5.14) over X, and using the divergence theorem and (5.15), (5.16), one 
finds that 

c2 = v, dy dz/ [ ~ ( 0 ,  z )  dz. (5.17) 

These observations indicate a strategy for systematically determining 50,51,. . . and 
CO, CI,. . . . The series expansions (5.6) and (5.1) of yo and ci may be substituted into 
(5.14), (5.15), (5.16), leading to a series of boundary-value problems for 50, 51, 5 2 , .  . . . 
One finds the Nth approximation Co + k2C1 + . . . k2(N-1)CN-I to ci by substituting 
wo = t o  + k251 + * * . k2(N- ' )<~-1  into (5.17) and retaining only terms up to 
on the right-hand side. 

The solutions to the boundary-value problem for 50 are the solutions 50 = constant. 
One would expect this kind of non-uniqueness because &, is only defined up to a 
multiplicative constant. One may remove the non-uniqueness by specifying the value 
of 50, say 50 = 1. Writing YO = 50 + O(k2) = 1 + O(k2) in (5.17), one finds that 

A 
C6 = - b + O(k2)  = 1 + O(k2),  

so that 

co = 1. 
An important consequence of this result is that the lowest-order approximate equa- 
tions (equations (5.3) and (5.4) with n = l) depend only on the mean depth of the 
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channel. They are always 

U t  = -dun, ~t = -guy 

which equations are analogous to the factored wave equation appearing in classical 
long-wave theory (e.g. see Lamb 1924, $169). Equation (5.7) indicates that 

f o  = dk2 + O(k4), 

so that q and @ are obtained from u and u by differentiating twice with respect to 
x and multiplying by -d. To this order of approximation the wave therefore has no 
transverse variation in its shape. 

The problem for el is 

hyy + 5lZz = 1 in X ,  (5.18) 

(5.19) 851 - = o  on axnr, 
an 
51y = 1 on y = 0. (5.20) 

The solution is determined up to an arbitrary function of x and t but may be made 
unique by specifying the value of el at a point on dX n r ,  say 

51(0, b / 2 )  = 0. (5.21) 

Writing yo = 1 + k2<1 + O(k4) in (5.17) and noting that A = b, one finds that 

(5.22) 

The number C1 has previously been termed the channel number in Groves (1992 $3.5). 
It depends only on the geometry of the channel, and is unique, even though tl, 
without the imposition of (5.21), is not. The second-order long-wave approximation 
is given by equations (5.3), (5.4) with n = 2 together with the expansion 

fo = (dk2 + Cld3k4) + dtl(O, z)k4 + O(k6).  

The transverse profile of a wave to the present order of approximation is therefore 
described by So(0,z) plus a constant. 

For a rectangular channel of non-dimensional height 1 and non-dimensional 
breadth b (figure 2) one finds that 

51 = iy2 + y ,  c1 = -:. 
Observe that (l(0,z) = 0, so that there is no transverse variation in the wave profile. 
The corresponding results for a triangular channel of non-dimensional height 2 (figure 
4) are 

51 = a(y2 + z2) - I, CI = -i(tan2 a - tana tanB + tan2 p )  - $. 
Finally, Peters (1966) has computed these functions for a semicircular channel of 
non-dimensional radius a = 4/x (figure 7). The results are 

51(YYZ) = $Y2 + z2) + y 

log(a - w )  - 2 - (w - a)2 

aw 
-aRe [ ( w  + a)2 log(a + w )  - 

71 ( w + a )  
3x2 - 48 log 2 - 74 

3x2 
c1 = 
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make use of the variational principle 
In cases where (5.18), (5.19), (5.20), (5.21) cannot be solved explicitly, one may 

(5.23) 

where the competitors for the minimum belong to the space H’(X) of functions ( 
such that ( and (’ are square integrable on X and satisfy i(0, b/2) = 0 (see Groves 
1994, 92.8). 

The variational principle (5.23) is useful for the purpose of estimating CI. Any 
function [ E H ’ ( X )  that satisfies [(O,b/2) = 0 may be substituted into (5.23) to give 
an upper bound on Cl. An important consequence of this fact is that CI is negative, 
which result follows by substituting [ = 0 into (5.23). The variational principle may 
also be useful for numerical computations of the channel number, particularly by 
finite-element methods (see Groves 1994, 42.8 for a discussion of this point). 

5.2.2. Gravity-capillary waves with edge constraints (1.7) 
Since it has the greater number of similarities with the case when surface tension is 

absent, let us tackle the problem with edge constraints (1.7) first. The non-dimensional 
versions of equations (3.26), (3.27), (3.28), (3.30) are 

(5.24) V’yy + W z z  = k 2 W ,  

(5.25) 

(1  + ok2)yp - C J W ~ ~ ~  = k 2 c 2 ~  on ax n so, (5.26) 

W Z ( 0 , O )  = 0, (5.27) 

Wz(O,h) = 0. (5.28) 

Observe first that a little more information about the edge constraints may be gleaned 
from (5.24), (5.25), (5.26), (5.27), (5.28). Let s denote arclength around dxnr. Because 
the normal derivative of y is always zero here, it follows that 

a(*)=o as dn on a x n r .  

Using this piece of information, together with (5.27), (5.28), one finds that 

W y r  (0,O) = Wvyz (0, b) = 0. (5.29) 

Let us now follow the theory in $5.2.1. Integrating (5.24) over X and using the 
divergence theorem, (5.25), (5.26) and (5.29), one finds that 

c2 = (1 + ok2) w dy dr /  ~ ( 0 ,  z) dz (5.30) 

One now substitutes the series expansions 

vjo = to + k 2 t 1  + k 4 t 2  + 9 . . , 
C: = c0 + k 2 c l  + k4c2 +.  . . 

for the non-dimensionalized variables w and ci into (5.24), (5.25), (5.26), (5.29), 
leading to a series of well-posed boundary-value problems for 50 ,  < I ,  5 2 , .  . .. One 
finds the Nth approximation Co + k2C1 + . * .  k2(N-1)C,+I to ci by substituting ~0 = 



Theoretical aspects of gravity-capillary waves in non-rectangular channels 40 1 

50 + k2<1 +. . . k2(N-')5~-1 into (5.30) and retaining only terms up to O(k2('"-')) on the 
right-hand side. 

The solutions for the boundary-value problem for 50 are the solutions 50 = constant. 
As before, one removes the uniqueness by choosing 50 = 1. Writing vo = 50 + O(k2)  = 
1 + O(k2)  in (5.30), one finds that 

c; = - A + O(k2)  = 1 + O(k2),  
b 

so that, as before, 

c, = 1. 

The problem for 51 is 

51, + 5 1 2 2  = 1 in x, (5.31) 

(5.32) 

(5.33) 
(5.34) 
(5.35) 

An elementary calculation shows that equations (5.33), (5.34), (5.35) are satisfied 
simultaneously if and only if 

<,, = 1 on y = 0. 

The term 51 is therefore the same as in the problem with no surface tension. It is 
determined up to an arbitrary function of x and t ,  but as before may be made unique 
by specifying <1(0, b / 2 )  = 0. Writing YO = 1 + k2<1 + O(k4) in (5.30), one finds that 

which result means that 

The coefficient C1 is therefore differs from the channel number which appears in the 
problem without surface tension only by the addition of a. 

Observe that the terms g0, t1  in the expansion of yo are the same as those in the 
corresponding expansion for the hydrodynamic problem in the absence of surface 
tension ($5.2.1). It is easy to see that the remaining terms {2,[3, ... are also the same 
in both cases. For a discussion of the significance of this point, see the remarks just 
before the start of $4. 

5.2.3. The hydrodynamic problem with edge constraints (1 .6)  

A different approach is needed to compute the coefficients CO, C1, C2,. . . and func- 
tions 50, 51,&,. . . for this version of the hydrodynamic problem. Recall from $3.2 that 
o = k2&g is the first root of 
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One may substitute the expansion 

k2 

g 
w = -c@) = dk2[co + ~ ~ ( k d ) ~  + ~ , ( k d ) ~  + . . -3 

of w in (5.36) and equate equal powers of k’ to successively determine C0,C1, C2, .... 
The values of the functions fm,,iim,N(rn) for a rectangular channel are given by 

equations (3.31), (3.32), (3.33). One finds after a long but straightforward calculation 
that 

tanh( gb2 /4a) l/’] -’ co= [ I -  
(gb2 /4a)’/’ 9 

fJ 1 + -(C,’ - 1)’ { $ coth ((gb2/4o)’/’) cl=--- 

b2 
16 m=l 2a2rnn(g/o + 4rnzn2/b2)2 

1 
6gh 2g2h3 gh3C,2 

--cosec’ ((gb2/4o)’/’) + hCt 
g’b coth(2rnxlb) W 

(see also Benjamin & Graham-Eagle 1985, p. 105). 
Having computed CO, C1, CZ, . . ., one may substitute the series 

~ o ( y , z , k )  = ~ o ( Y , z )  +k’ti(~,z) + k 4 t 2 ( ~ , z )  + 
ci(k) = Co + CIk2 + C2k4 + * . . , 

into the non-dimensionalized versions of equations (3.26), (3.27), (3.28), (3.29), leading 
to a sequence of boundary-value problems for 50, tl, 52,. . .. These boundary-value 
problems are not trivial to solve, even for a rectangular channel, and may be tractable 
only by numerical solution. 

6. Bifurcation theory for travelling waves 
Let us conclude by briefly considering the hydrodynamic problems for travelling 

waves, that is solutions of the form q(x ,  z, t) = q ( x  - ct, z ) ,  $(x, y, z ,  t) = $(x - ct, y, z). 
The system of equations obtained by substituting this ansatz for q and $ into the 
equations of motion may be regarded as a dynamical system in which x is the time- 
like variable and c is a parameter. (A precise discussion of this point in the context 
of the classical water-wave problem is given by Groves & Toland 1995, where it is 
shown that the dynamical system in question is Hamiltonian. A forthcoming paper 
will provide the corresponding generalization to the channel setting.) 

One proceeds by analysing the spectrum of this dynamical system. The number 
and magnitude of the purely imaginary non-zero eigenvalues +ik, which correspond 
to bounded 2n/k-periodic travelling waves, depend on the value of c, and this 
information is of course contained in the diagrams of the dispersion relations (figures 
3, 5, 6, 8 when f~ = 0, figures 9, 10, 11, 12 when 0 > 0). The curves in these diagrams 
indicate the values of k corresponding to purely imaginary eigenvalues +ik. Moreover, 
the curves have the same qualitative properties regardless of the shape of the channel. 
These generic features may be exploited in order to deduce qualitative information 
concerning periodic travelling waves. 

One studies the diagrams of the dispersion relations by regarding c as a bifurcation 
parameter and considering the development of periodic waves of different wavenum- 
bers as c is increased. Let us first consider the capillary-gravity wave problems, as 
represented by figure 9. There is a minimum value c: = mink,Oco of c, below which 
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t 
c = c; 

FIGURE 13. Bifurcation of two periodic waves at c = 4 .  

there are no non-trivial periodic waves. When c is increased through c;, two periodic 
solutions appear: a periodic wave whose wavenumber decreases as c is increased, so 
that it becomes a gravity wave; and a periodic wave whose wavenumber increases as 
c is increased, so that it becomes a capillary wave. The value c; is a bifurcation point 
at which these two periodic solutions appear. Here two pairs of complex eigenvalues 
collide and separate on the imaginary axis (see figure 13). Further bifurcations of the 
same type occur as c is increased through the bifurcation points ci = mink,ocn. 

Observe that the situation is slightly different when the physical parameters g ,  b 
and CT are configured such that cg occurs at k = 0 (figure 10). In this case only one 
wave is generated as c passes through the bifurcation point c;, namely the wave which 
is ultimately dominated by capillary effects. Here a pair of real eigenvalues collides 
at the origin and separates on the imaginary axis. Finally notice that when Q = 0 
there is an infinite number of periodic travelling waves for each value of c (figures 3, 
5, 6, 8). A bifurcation analysis based upon the above ideas is therefore not possible. 

The above study of the qualitative properties of the diagrams depicting the disper- 
sion relations sets in place the theoretical framework for an analysis of the nonlinear 
generalizations of the channel problems with a view to constructing a bifurcation 
theory for periodic travelling-wave solutions. Such an analysis has been undertaken 
for the classical two-dimensional water-wave problem by Jones & Toland (1986) and 
Jones (1989). A forthcoming paper will extend the ideas of these authors to the 
nonlinear channel problems using the above framework. 

I should like to record my thanks for the receipt of an EPSRC Research Fellowship. 
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